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Summary Introduction 

I 
I 

A theoretical analysis and numerical calculations for the 
turbulent flow field and for the effect of free-stream turbulence 
on the surface heat transfer rate of a stagnation flow are 
presented. The flow field considered is the region near the 
forward stagnation point of a circular cylinder in a uniform 
turbulent mean flow. The emphasis of the present study is on 
the modeling of turbulence and its augmentation of the surface 
heat transfer rate. The free stream is steady and incompressible 
with a Reynolds number of the order of lo5 and a turbulence 
intensity of less than 5 percent. In the analysis, the flow field 
is divided into three regions: (1) a region significantly away 
from the cylinder where the mean velocity is uniform and the 
turbulence is homogeneous and isotropic, (2)  an external 
inviscid flow region with a constant rate of the mean velocity 
variation where the turbulence is distorted by the mean flow 
velocity, and (3) an anisotropic turbulent boundary layer region 
over the cylinder surface. The turbulence modeling techniques 
used are the k-c two-equation model in the external flow region 
and the time-averaged turbulence transport equation in the 
boundary layer region. The turbulence double correlations, 
the mean velocity, and the mean temperature are solved 
numerically from sets of finite difference equations. These 
finite difference equations are derived from the flow-field 
governing equations. The solution is obtained from matching 
the turbulence kinetic energy along the boundaries between 
the flow regions. The results and their comparisons with the 
experiments show that (1) depending on the free-stream 
turbulence characteristics, the turbulence kinetic energy is 
amplified or attenuated along the stagnation-point streamline, 
( 2 )  the free-stream turbulence penetrates into the flow region 
near the surface and induces a high surface heat transfer rate, 
(3) the turbulence kinetic energy increases continuously in the 
mean flow direction along the boundary layer edge and, near 
the stagnation point, the rate of variation in the Reynolds 
normal stress is different for each component, (4) depending 
on the level of the turbulence kinetic energy, different surface 
heat transfer rates may occur near the stagnation point, and 
(5) the analysis provides a procedure in computing the surface 
heat transfer rate near a stagnation point as functions of the 
turbulence longitudinal microlength scale, the turbulence 
intensity, and the free-stream Reynolds number. 

The momentum and thermal flow fields near the forward 
stagnation point of a circular cylinder in turbulent flow have 
been the focus of considerable study (refs. 1 to 12). One 
objective has been to understand the enhancement of the heat 
transfer due to the free-stream turbulence near the leading edge 
of an airfoil. Existing experiments (refs. 3 and 4) have shown 
that when the turbulence intensity is 3 to 5 percent the local, 
Nusselt number increases by 75 percent as compared with 
laminar flow conditions. In the initial stage of turbine blade 
design, the blade leading edge is often modeled as a circular 
cylinder in a turbulent free stream. With the current emphasis 
on high turbine inlet temperature, it has become even more 
important to understand the effect of turbulence on the surface 
heat transfer, particularly at the leading-edge stagnation region. 
In fact, prediction of the stagnation-region surface heat transfer 
becomes vital to the turbine blade cooling design. To estimate 
this surface heat transfer rate, correlations derived from 
experimental data may be used. Detailed experimental data 
can be found in the paper by Lowery and Vachon (ref. 5) .  
The alternative is to rely on the analysis to obtain the surface 
heat transfer rate. The objective of the present study is to 
develop an analytical method that can predict the effect of the 
turbulence on the surface heat transfer rate. 

Smith and Kuethe (ref. 6) used the two-dimensional 
boundary layer theory to analyze the flow at the stagnation 
point on a circular cylinder. The eddy viscosity was assumed 
to be proportional to the turbulence in the free stream. 
Reynolds’ analogy was used. This analysis indicates a large 
effect of turbulence on heat transfer. A similar analytical 
approach was used by Gorla (ref. 7) to investigate the effects 
of the unsteadiness in the free stream and its turbulence on 
heat transfer at a stagnation point. Other studies (refs. 8 to 
1 1) show that turbulence amplification, because of vortex 
stretching, can also influence the thin boundary layer and, 
therefore, the surface heat transfer rate. 

To model the turbulence effect, Hijikata et al. (ref. 12) 
performed a theoretical and experimental study of the 
stagnation-point anisotropic turbulence. An equation for the 
anisotropic turbulence was added to the k-6 two-equation 
turbulence modeling to analyze the measurements. Their 
analysis shows that the turbulence length scale affects the 
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surface heat transfer rate. Traci and Wilcox (ref. 13) 
analytically studied the turbulence effect on the stagnation- 
point flow field using Saffman turbulence modeling (ref. 14). 
The mean velocity gradients within the inviscid flow were 
found to be important in analyzing the stagnation-point heat 
transfer. A difficulty in this type of analysis is attaining a 
proper match of the boundary conditions between the different 
flow regions. Strahle (ref. 15) tried to resolve analytically the 
turbulence matching conditions. Analytical relations between 
the turbulence kinetic energy and its dissipation rate at the 
stagnation point and in the free stream were found. On the 
basis of the method of invariant modeling (refs. 16 and 17), 
Wang (ref. 18) proposed a theoretical boundary layer flow 
analysis and numerical computational procedure to investigate 
the turbulence, momentum, and thermal fields within the 
stagnation flow region. Ad hoc turbulence boundary conditions 
were imposed along the boundary layer edge. The numerical 
calculation showed that rapid amplification of the Reynolds 
normal stresses along the boundary layer edge was required 
to predict the approximate surface heat transfer rate as reported 
in existing experiments. 

From the experimental results and analytical methods of 
these existing studies, it is possible to pursue a detailed 
theoretical and numerical analysis of the forward stagnation 
flow field of a circular cylinder in a turbulent free stream. 
Reported herein is such an analysis, which provides a 
procedure to compute the surface heat transfer rate as functions 
of the free-stream turbulence longitudinal microlength scale, 
the turbulence intensity, and the Reynolds number. The 
emphasis is on the modeling of turbulence and its augmentation 
of the surface heat transfer rate. 

The stagnation flow field is divided into three distinct 
regions: (1) a region away from the cylinder where the mean 
velocity is uniform and the turbulence is assumed to be 
homogeneous and isotropic, (2) an external inviscid flow 
region which has a constant rate of mean velocity variation 
and the mean velocity distorts the turbulence, and (3) an 
anisotropic turbulent boundary layer region over the cylinder 
surface. For turbulence modeling, the k-c two-equation 
modeling and the time-averaged turbulence transport equation 
are used respectively in flow regions 2 and 3. These turbulence 
modeling equations and the mean flow conservation equations 
are used to formulate the theoretical analysis. The turbulence 
double correlations, the mean velocity, and the mean 
temperature are solved numerically from sets of finite 
difference equations. The solution is obtained from matching 
the turbulence kinetic energy along the boundary between the 
flow regions. These analytical results are compared with the 
measurements from existing experiments. 

Symbols 

AGi 
a mean velocity parameter 

coefficients of equation (Cl), i = 1 to 9 

2 

coefficients of equation (C6), i = 1 to 4 
empirical constants, i = 1 to 5 
specific heat 
empirical constant 
cylinder diameter 
dimensionless turbulence dissipation rate 
dimensionless mean flow streamwise velocity 
parametrical functions of cp, i = 1 to 3 
flow variable of equation (Cl) 
turbulence longitudinal correlation 
dimensionless mean temperature 
dimensionless turbulence kinetic energy 
turbulence kinetic energy 
spatial distance 
Nusselt number 
mean static pressure 
laminar Prandtl number, 0.7 
pressure fluctuation 
sum of dimensionless Reynolds normal stresses, 

dimensionless Reynolds normal stress along x direction 
dimensionless Reynolds normal stress along y direction 
dimensionless Reynolds normal stress along z direction 
Reynolds number 
dimensionless Reynolds shear stress 
mean temperature 
free-stream turbulence intensity, fl/ VF 
temperature fluctuation 
mean velocity components 
transformed velocity of V (eq. (13)) 
turbulent dynamic viscosity 
velocity fluctuations 
physical coordinate system 
stagnation-point laminar boundary layer thickness 
turbulence dissipation rate 
transformed coordinate along y direction 
dimensionless turbulence correlation, - vt/ U,T, 
thermal conductivity 
turbulence modeling length scale 
turbulence longitudinal microlength scale 
kinematic viscosity 
transformed coordinate along x direction 
density 
azimuth angle 

Rx + Ry -k R, 
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Subscripts: 

e 
F free-stream condition 
m 
o,e 

W surface condition 
0 condition near stagnation point 
1 condition at location 1 
2 
3 

external or boundary layer edge condition 

grid point along ( or q direction 
boundary layer edge condition at initial station 

condition at location 2 of boundary layer edge 
condition at location 3 of boundary layer edge 

Superscript: 

- time mean average 

Analytical Formulation of Flow Regions 
The flow region of interest is around the forward stagnation 

point of a circular cylinder in a turbulent free stream. Figure 1 
schematically represents the flow field. The diameter of the 
cylinder is D and its axis is perpendicular to the free-stream 
mean velocity V,. The free-stream Reynolds number is defined 
as Re = VFD/V, where Y is the kinematic viscosity. The 
velocity fluctuation in the free stream is vF, and the free- 
stream turbulence intensity is defined as Tu = q / V F .  The 
free-stream turbulence longitudinal microlength scale is 
denoted by hF The cylinder is assumed to have a constant 
surface temperature T,. The free-stream temperature is TF. 

The stagnation point is taken as the coordinate-system origin; 
x and y denote the distances parallel to and normal to the 
cylinder surface; and z denotes the distance parailel to the 
cylinder axis. The mean flow field is assumed to be steady, 
incompressible, and two dimensional. The mean velocity 
components are U and V along the x and y coordinates. The 
turbulence isthree - dimensional. - The velocity fluctuations are 
denoted by u2,  v2, and w 2  along the x, y, and z directions. 
To formulate the theoretical analysis, the flow field is divided 
into three flow regions. The governing equations of the mean 
flow and the turbulence are derived for each flow region. 
Following the laminar flow analysis, the relations 

u,v 

are used for coordinate transformation. The analytical 
formulation, together with the assumptions and the boundary 
conditions, for each flow region is described here. 

r BOUNDARY ' LAYER EDGE 

Figure 1.-Schematic of flow field of interest. 

Region 1 

This flow region is the uniform turbulent free stream away 
from the cylinder. The properties of the mean flow and the 
turbulence are not influenced by the existence of the cylinder. 
Appropriate conditions of the turbulence kinetic energy k and 
the turbulence dissipation rate E are required to characterize 
the turbulence. The turbulence is assumed to be homogeneous 
and isotropic. The free-stream turbulence kinetic energy and 
the turbulence dissipation rate are given by the following 
equations (ref. 19): 

The turbulence longitudinal microlength scale can be 
determined from the isotropic turbulence theory and two-point 
turbulence correlations. The two-point turbulence longitudinal 
correlation g, the spatial distance P, and the free-stream 
turbulence longitudinal microlength scale AF are related by 
the following equation: 
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e2 
g(l) = 1 - 2 

hF 

with small values of 4. 

(3) 

Region 2 

In this region, the mean flow velocity is disturbed by the 
cylinder. The mean velocity variation distorts the turbulence. 
However, the turbulence does not influence the mean flow 
velocity. Thus, the mean flow is represented with the two- 
dimensional inviscid flow solution near the stagnation point. 
The mean flow velocity components are 

U = a x  and V =  - a y  (4 )  

with a = 4 v , ~ / D .  The turbulence kinetic energy variation 
along the stagnation-point streamline is of interest in this study. 
The turbulence is modeled with the k-E two-equation 
turbulence model. A summary of this modeling technique is 
given in appendix A. For convenience, the x direction diffusion 
terms are neglected in the k and E equations. Along the 
stagnation-point streamline, the following forms of the k and 
E equations are found: 

( 5 )  
dk 

€ 

Introducing the coordinate transformations (eq. (1)) and the 
following forms of solutions for k and E ,  

k = vaK(r)) and E = va2E(v)  (7) 

results in the following k and E equations: 

(8) 
dK K 2  

%= -4cpz 

Equations (8) and (9) are solved for the turbulence properties 
K and E in the interval v1 L 1 2 ~2 along the stagnation 
streamline, where q1 is the boundary between flow regions 
1 and 2 and v2 is the boundary between flow regions 2 and 3.  

The boundary conditions are defined in the following: 
(1) At 7 = 71, 

where kF and E F  are previously determined by equation (2). 
(2) By neglecting the diffusion term in equation (9) at 9 1,  

this equation gives the following additional boundary condition 
at = q l :  

(3) It is also further assumed (ref. 13) that 

-- - 0  a t v = v 2  
dv 

dK 

The finite difference method is used to solve the boundary 
value problem in equations (8) to (12). Appendix C con- 
tains a description of the numerical method. The relation 
v l  = V F / (  va)0.5 is found from equations (1) and (4 ) ,  and v2 
is resolved in the process of the numerical calculation. 

The solutions of the turbulence properties in flow region 2, 
obtained in the manner described previously, provide the 
turbulence quantities K and E at q = v2.  These turbulence 
quantities are required for the analysis of the boundary layer 
flow region. 

Region 3 

A steady, two-dimensional, incompressible turbulent bound- 
ary layer flow is assumed in this near-wall region. The mean 
flow properties are described by the boundary layer continuity, 
momentum, and enthalpy equations. The momentum and 
enthalpy equations contain the turbulence double correlations 
G and Vt. These double correlations are related to the higher 
order turbulence correlations and the mean flow properties 
through the transport of the turbulence. A method to model 
the turbulence double correlations was developed by Donaldson 
et al. (refs. 16 and 17). This method is used to formulate a 
theoretical analysis of the turbulence in this flow region. The 
Reynolds stress transport equations are derived by following 
the theory in reference 16. Assumptions are made for the 
turbulence closure relations and a modeling length scale A. 
A summary of the theoretical formulation and assumptions is 
given in appendix B. 

For the present boundary layer flow analysis, the mean 
velocity, U, = ax, is assumed along the boundary layer edge 
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between regions 2 and 3. The mean flow properties and 
turbulence double correlations are also nondimensionalized as 

Introducing the previous dimensionless variables and the 
coordinate transformations (eq. ( 1 ) )  into the mean flow and 
turbulence transport equations (see appendix B) results in the 
following forms of the flow-field governing equations: 

Continuity equation: 

where 

Momentum equation: 

Enthalpy equation: 

Turbulence equations: 

(R - 3Rx) vRO’~ 

Aue 
+2E 

+ 2tRx (- 2- - - - - - - at ue a? ax U : A ~  

(16) 

vRO.’ (R - 3Ry) + 2t- + 2tRy AU, 3 

a2Rz vRO.~ (R  - 3R,) 
all AU, 3 

+ - 7 + 2 t -  

2v2 
U:A2 

- 2tR,- 
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and 

where R = R, + Ry + R,. 
In order to solve the previous governing equations for the 

mean flow and turbulence properties, the initial and boundary 
conditions are derived analytically in the following manner. 

Initial condilions.-The initial profiles of the mean flow 
properties and the turbulence correlations at (P = p0 are 
determined analytically from equations (13) to (20) .  The 
following assumptions are made: 

( 1 )  At v2 location, 

- 0  
aF aH -=o, -- 
all ar] 

- 0  
as ae -=o ,  -- 
all a V  

In addition, 

F = 1 ,  H = 1 ,  S = C ~ ( R J ~ ~ ) O . ~ ,  and 8 = 0 

are imposed at v2. Also, c5 is an empirical constant; the value 
c5 = 0.001 is used in this study. 

(2)  The Reynolds normal stress components 2 and 7 are 
assumed to be independent of (P for very small (P. Therefore, 
at (PO? 

and 
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Similarly, 

and 

ae 
- = ((Po) a t  

are also assumed at cp0. 
(3) The mean flow is symmetric about the (P = 0 plane. In 

order to facilitate the analysis, this mean flow behavior is also 
assumed at small distances away from the stagnation point, 
(P = 0. Therefore, aF/a[ = 0 and aH/a[ = 0 are imposed 
along the r]  direction at the 

(4)  The conditions F = 0, H = TJT,, R, = 0, Ry = 0, 
Rz = 0,  S = 0, and 0 = 0 are also imposed at the cylinder 
surface. 

By applying these assumptions (eqs. (21) to (24)) to the 
turbulence governing equations, the following relations are 
found at (P = cp0 and r]  = q2: 

location. 

and 

where Ro,c = 2vaK2/U?,, is assumed. Since 6 = 0 is imposed 
at q2, de/dt = 0 occurs at the boundary layer edge. This zero 

i 

I 
I 

h 

1 

i 

i 

1 

1 
i 



gradient condition is also used within the boundary layer at 
p = po. It follows from the assumption (eq. (25)) that 

With the aid offi(po),f2(po), andf3(po), assumption 2 defines 
the mean flow, streamwise turbulence gradient terms. 
Substituting the mean flow, streamwise gradients into 
equations (13) to (20) results in a set of ordinary differential 
equations with the boundary conditions specified at r]  = 0 and 
r]  = q2. These equations are solved numerically for the 
boundary layer flow property profiles at po = 0.04" in order 
to avoid the singularity at the stagnation point (p = 0"). These 
property profiles are used as the initial conditions for the down- 
stream, boundary layer flow-field analysis. 

Boundary conditions. -The turbulence double correlations 
along the boundary layer edge are also required to analyze 
the flow field. The turbulence kinetic energy is first defined 
by using the k-e two-equation turbulence modeling. The 
turbulence kinetic energy is then substituted into the Reynolds 
stress equations to determine the turbulence double 
correlations. 

By following the k-E two-equation turbulence modeling 
technique (appendix A), the turbulence modeling equations 
can be written in the x-y coordinate system as 

If the coordinate transformations (eq. ( 1 ) )  and the following 
forms of solutions for k and E 

k = vuK(,$) and E = vu2E(t) (33) 

are introduced into equations (31) and (32),  the turbulence 
modeling equations become 

(34) 
dK K2 
d5 E 

2 [ - =  4cP-  - E  + 

The analysis of the turbulence in flow region 2 defines the 
following initial conditions: 

K = K2 and E = E2 (36) 

at ,$ = E2 and r]  = v2. 
With the assumptions that the gradients aR,/ar], aRylar], 

and aRz/aq vanish at the boundary layer edge, equations (16), 
(17),  and (18) give the following theoretical relations among 
the mean velocity, the Reynolds normal stresses, and their 
mean flow streamwise gradients: 

and 

The previous equations can be solved for the Reynolds 
normal stresses. The sum of the Reynolds normal stresses R 
should be consistent with the turbulence kinetic energy 
obtained from equations (34) and (35).  The Reynolds normal 
stresses along the boundary layer edge are determined from 
this consistency requirement. Therefore, the following analysis 
is used. 

The previous analysis of the initial profiles defines the 
Reynolds normal stresses at 4 = E 2  and r]  = q2. These are the 
initial conditions to integrate equations (37) to (39) along the 
downstream direction. In this study, the fourth-order Runge- 
Kutta numerical method is used. The turbulence kinetic energy 
obtained previously from equations (34) and (35) is used to 
evaluate the derivatives. The integration step is adjusted until 
the turbulence kinetic energy (Rx,e + Ry,e + R Z , , ) U ~ / 2  
satisfactorily converges to the corresponding value predicted 
by the k-E two-equation turbulence modeling. The cor- 
responding Reynolds normal stresses are the boundary 
conditions at the boundary layer edge. 

Finally, the following conditions are also imposed: 
( 1 )  At the boundary layer edge r ]  = q2, F, = 1, He = 1 ,  

(2)  At the surface r]  = 0, F = 0, H = TJT,, R, = 0, 
S, = c5 ( R,,3y,e)0.5, and 6 = 0. 

Ry = 0,  R, = 0, S = 0, and 6 = 0. 



A numerical computational procedure to calculate the 
boundary layer flow field was developed in a previous study 
(ref. 18). This numerical method and the other computational 
procedures used in this study are described in appendix C. 

NUMBER. 
Re 

Results and Comparison with Experiment 
In order to verify the previous theoretical analysis, a 

numerical computation was performed to predict the existing 
measurements. A set of detailed experimental data on the effect 
of free-stream turbulence on heat transfer from heated 
cylinders placed normal to the airstream was reported by 
Lowery and Vachon (ref. 5). Tests were conducted over a 
range of Reynolds numbers and at different turbulence levels. 
The two-point turbulence longitudinal correlations in the free 
stream were measured. These data can be used to determine 
the turbulence longitudinal microlength scale that is required 
to start the present numerical calculations. Thus, the test 
conditions of this reference experiment were used as input to 
the present numerical computational procedures. 

Examples of the free-stream turbulence longitudinal 
correlation and the corresponding turbulence longitudinal 
microlength scales, with Tu = 0.013, 0.017, and 0.028, and 
Re = 2 . 5 0 ~  lo5, are shown in figure 2. The microlength 
scales were obtained by curve-fitting the experimental data 
with equation (3). On the basis of the free-stream mean veloc- 
ity, the free-stream turbulence intensity, and the turbulence 
longitudinal microlength scale, the present numerical 
computational procedures were performed to calculate the 
turbulence kinetic energy, the turbulence double correlations, 

FREE-STREAM DIMENSIONLESS 
TURBULENCE TURBULENCE 
INTENSITY. LENGTH SCALE, 

Tu hF/D 

- EQUATION (3 )  

0 .01 * 02 .03 .04 .05 
SPATIAL DISTANCE, l/D 

Figure 2.-Free-stream turbulence longitudinal microlength scale. Reynolds 
number Re, 2 . 5 0 ~  lo5. 

and the mean flow properties within the stagnation flow field. 
The surface heat transfer rate was also calculated from the 
mean temperature distribution. In the following sections, these 
numerical results are described and are compared with the 
experiment of reference 5. 
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FREE-STREAN DIMENSIONLESS 
TURBULENCE TURBULENCE 
INTENSITY, LENGTH SCALE, 

I U  hF/D 
0.017 0.007 
,028 .008 

- ---- 

I 
ii i 

101 1 02 103 104 
REYNOLDS NORMAL STRESS. Rx,Ry, OR R, 

Figure 4.-Reynolds normal stress profiles within stagnation-point boundary 
layer. Reynolds number Re, 2.50X16. 

The analytical predictions of the mean velocity component, 
F = U U , ,  within the boundary layer at cp = cpo are shown in 
figure 5. These profiles are compared with the mean velocity 
profile of the theoretical laminar boundary layer. The 
comparison shows that the free-stream turbulence increased 
the velocity near the surface and decreased the velocity near 
the boundary layer edge. Existing measurements (ref. 21) of 
this velocity component with Re = 2 . 5 0 ~  lo5 and Tu = 0.05 
are also plotted in this figure. The analytical results are in good 
agreement with the measurements. 

Examples of the computational results of the turbulence 
kinetic energy and the Reynolds normal stresses along the 
boundary layer edge are shown in figure 6. In this figure, the 
turbulence properties are nondimensionalized with the corre- 
sponding stagnation-point values. The turbulence kinetic 
energy increased continuously along the downstream direction. 
The rate of change in the kinetic energy is a function of the 
free-stream turbulence properties A,, Tu, and Re. A large 
increase in the turbulence kinetic energy was found for the 
case with small free-stream turbulence intensity and a small 
Reynolds number. The Reynolds normal stress components 
u,' and v,' increased at the downstream locations. However, 
the 2 component was reduced near the stagnation point. The 
effect of the microlength scale on the Reynolds normal stress 
along the boundary layer edge is shown in figure 7. The 
computational results for the cases with Re = 2.50X lo5 and 
Tu = 0.028 but different length scales, AJD = 0.0053 and 
0.0079, are presented. The turbulence microlength Scale 
affected the Reynolds stress distributions. -- Increasing the length 
scale decreased the ratio of U,"/U;., and increased the ratio of 

- - 

6 

5 

c 
y 'I 
3 
CL 

v, 
0 c 

a 

-13 
2 
0 z 

- 
FREE-STREAM DIMENSIONLESS 
TURBULENCE TURBULENCE 
INTENSITY, LENGTH SCALE, 

Tu hF/D - -- 0.017 0.0066 ---- .028 .0079 --- .055 ,0010 

- LAMINAR FLOW 
- 

0 EXPERIMENTAL DATA (REF. 21). 
T u  = 0.055 AND Re = 2.50~10~ 

0 .2 .4 .6 .8 1 .o 
MEAN FLOW STREANWISE VELOCITY, F = U/Ue 

Figure 5.-Mean flow streamwise velocity component within stagnation-point 
boundary layer. Reynolds number Re, 2 . 5 0 ~  10'. 

-- 
W,'/W;,, along the boundary layer edge. No significant 
difference in the ratio of v,'/v;,, was calculated. 

-- 

Surface Heat Transfer 

The present analytical results of the surface heat transfer 
are defined in terms of the Nusselt number 

=O Nu = 
Tw - TF 

The mean temperature gradient (C~T/C~Y),,~ at the surface was 
calculated numerically from the mean temperature profile, 
which in turn, was obtained previously from the solution of 
the boundary layer flow. 

The analytical results for the stagnation-point surface heat 
transfer rate over a range of the free-stream Reynolds number 
and the turbulence intensity are compared with the 
experimental data (ref. 5) and existing correlations (refs. 5 
and 6) in figure 8. The surface heat transfer rate is expressed 
in the form of the Froessling number (Nu Re-0.5). Linear 
variation in the turbulence longitudinal microlength scale as 
a function of the free-stream Reynolds number was also 
assumed in the present calculation. The turbulence longitudinal 
microlength scale decreased as the Reynolds number increased. 
With constant free-stream turbulence intensity, turbulence 
microlength scales within f 10 percent of the values in figure 2 
were used in the numerical computation for a range of the free- 
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w 1  
v 
2 3.0 
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X 

W u 
L 
W 
J 3 

PI 3 
m 

2.6 

2.2 

1.8 

1.4 

1 .c 

I SEYNOCDS 
NUMBER. 

Re 

1- 1 . 9 6 ~ 1 0 ~  ---- 3.00 
- 

- 

- 

- 

D INENS I ONLESS 
TURBULENCE FREE-STREAM 

LENGTH SCALE, TURBULENCE 
hF/D K I N E T I C  

ENERGY, 

DIMENS I ONLESS 

KF 

0.0053 12.27 
,0053 19.06 

DIMENSIONLESS 
FREE-STREAM 
TURBULENCE 

D I S S I P A T I O N  
RATE. 

EF 

11.45 
11.45 

I N I T I A L  BOUNDARY LAYER EDGE 
STATION 

DI MENS I ONLESS DIMENS I ONLESS 
TURBULENCE TURBULENCE 

K I N E T I C  DISSIPATION 
ENERGY, RATE. 

Ko,e E a s e  

7.51 3.79 
19.03 11.42 

I I 1 1 1 1 1 1  1 
VI 

E - 1 . 9 6 ~ 1 0 ~  0.0486 56.92 20.05 125.50 66.72 
.0053 74.10 53.17 60.82 33.66 

. 5 s L 'I--- 2.50 

v) 
2 
0 2 

> Y PI 

P / 

I I I I I I l l  I I 1 I 1 1 1 1 1  

AZIMUTH ANGLE. (P. DEG 

(a) Turbulence intensity Tu, 0.013. 
(b) Turbulence intensity Tu, 0.028. 

Figure 6.-Turbulence kinetic energy and Reynolds normal stresses along boundary layer edge. 
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I N I T I A L  BOUNDARY LAYER EDGE STATION 

DIMENSIONLESS DIRENSIONLESS DIMENSIONLESS 
TURBULENCE TURBULENCE TURBULENCE 

LENGTH SCALE. KINETIC DISSIPATION 
AF/D ENERGY, RATE, 

Ko,e Eo,e 

- - 0.0053 60.82 35.66 
,0079 150.06 7‘3.41 ---- 

I I I l l 1  I I I I l l l l  I I I I I I I l l  I 
I4 .06 .08 .1 .2 .4 .6 .8 1 2 4 6 8 1 0  20 

AZIMUTH ANGLE, 9. deg 

Figure 7.-Eff&t of turbulence longitudinal microlength scale on Reynolds normal stresses along boundary layer edge. Reynolds number Re, 2.50X Id; 
free-stream turbulence intensity Tu, 0.028. 
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analysis and experimental correlations. 

stream Reynolds number of 1.50 5 ReX10-5  53.00. 
Because it includes the effect of the free-stream turbulence 
microlength scale, the present analysis calculates a larger 
stagnation-point surface heat transfer rate than is indicated by 
the correlations in references 5 and 6. 

Examples of the computational results of the turbulence 
double correlation -ZU,T, within the boundary layer at the 
stagnation point are shown in figure 9. The maximum 
turbulence correlation occurs near the surface. Increasing the 
free-stream turbulence intensity also increases the turbulence 
correlation % Together with the characteristics of the Reynolds 
n o d  stress component (fig. 4), the present analysis indicates 
that the free-stream turbulence penetrates into the near-surface 
flow region and induces a large turbulence correlation Vt, Thus, 
a surface heat transfer rate larger than that for laminar flow 
occurs. 

Some analytical results of the surface heat transfer rate 
within a small distance from the stagnation point are plotted 
in figure 10 in terms of the Froessling number. An 
approximately constant Froessling number is calculated only 
for the case with Tu = 0.013. For Tu = 0.017 and 0.028, the 
analytical results show a reduction in the Froessling number 
near the stagnation point. With high free-stream turbulence 
intensity, a large turbulence dissipation rate may occur near 
the stagnation point. This turbulence dissipation rate reduces 
the rate of the increase in the turbulence kinetic energy. This 
rate of increase in K, is not enough to induce a constant 
surface heat transfer rate. 

To investigate the effect of the turbulence longitudinal 
microlength scale on the surface heat transfer rate, we 
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compared the analytical results of the turbulence kinetic energy 
and the Froessling number for XF/D = 0.0053 and 0.0079 
with Re = 2.50X105 and Tu = 0.028 in figure 11 .  With 
XF/D = 0.0079, the present analysis computed the 
experimental data in reference 5 .  A lower level of the 
turbulence kinetic energy and a smaller Froessling number 
were also predicted for the case with a small free-stream 
turbulence longitudinal microlength scale. These computational 
results also show a reduction in the Froessling number near 
the stagnation point. 

In this study, the approximation 

was used along the boundary layer edge. This approximation 
is similar to the correlation observed from the flat-plate 
turbulent boundary layer study (ref. 20). In the present 
analysis, c5 = 0.001 was found to give the best computational 
results. In an earlier study (ref. 18), a different value of c5 
(0.OOOl) was used because the boundary layer edge location 
and the corresponding turbulence kinetic energy (or the 
Reynolds normal stresses) were not analyzed theoretically. If 
one uses the smaller value of c5, then a small (nonzero) UV 
is imposed along the boundary layer edge. This approximation 
is different from the k-6 two-equation turbulence modeling, 
which requires Se = 0 for the external flow field in this study. 
However, the requirement of S, = 0 is itself an assumption. 

= 0 was also imposed at the boundary 
layer edge. Intuitively, the turbulence dynamic equations can 

The assumption 
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Figure 10.-Boundary layer edge turbulence kinetic energy and corresponding Froessling number. 
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Figure 11.-Effect of turbulence longitudinal microlength scale on turbulence kinetic energy at boundary layer edge and Froessling number. Reynolds 
number Re, 2.50X 16; turbulence intensity Tu, 0.028. 

also be used to study the variation of the turbulence double 
correlation vtwithin the external flow region. If T i s  nonzero 
in the external flow field, then a different zdistribution may 
occur within the boundary layer flow region, and the present 
analysis will predict different stagnation-flow surface heat 
transfer rates. If this is true, it might resolve the different levels 
of the stagnation-flow surface heat transfer rate reported in 
various experiments. Although the task requires the ? 
boundary condition within the free stream, the effect of the 
free-stream temperature fluctuation on the surface heat transfer 
rate of the stagnation flow can be studied by using the present 
analysis. 

Conclusions 
A theoretical analysis was formulated to model the effect 

of the free-stream turbulence on the surface heat transfer of 
a stagnation-flow region. The flow field of interest was around 
the forward stagnation point of a circular cylinder in a turbulent 
flow. The k- E two-equation turbulence modeling was used to 
analyze the turbulence kinetic energy within the external 
inviscid flow region. The time-averaged turbulence transport 
equations were employed to predict the turbulence double 
correlations within the boundary layer. From the boundary 
layer edge conditions of the turbulence kinetic energy, the 
transport equations of the mean flow and turbulence were 
solved numerically for the turbulence double correlations, the 
mean velocity, and the mean temperature. 

The present analytical results show that, depending on the 
free-stream turbulence properties, different levels of turbulence 
kinetic energy occur along the boundary layer edge. These 
different levels of turbulence kinetic energy induce different 
surface heat transfer rates. Increasing the free-stream 
turbulence intensity or the turbulence longitudinal microlength 
scale also increases the stagnation-region surface heat transfer 
rate. It is postulated that the free-stream turbulence penetrates 
into the boundary layer and induces high surface heat transfer 
rates. 

The analysis presents a procedure to calculate the stagnation- 
point surface heat transfer rate as a function of the free-stream 
turbulence intensity, the turbulence longitudinal microlength 
scale, and the Reynolds number. Because of limited data on 
the turbulence longitudinal microlength scale, this analysis was 
verified only for some cases with a Reynolds number of the 
order of lo5 and a free-stream turbulence intensity of less 
than 5 percent. By considering the free-stream turbulence 
longitudinal microlength scale, this analysis predicts a higher 
stagnation-point surface heat transfer rate than was obtained 
from the existing correlations relating the free-stream 
turbulence intensity, the Reynolds number, and the surface 
heat transfer rate. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, June 2, 1987 
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Appendix A 
k-c Two-Equation Turbulence Modeling 

Launder and Spalding (ref. 22) developed the k-E two- 
equation turbulence modeling technique. It has been found 
effective by many researchers in modeling the turbulence of 
different turbulent flow configurations. In the present study, 
this technique is also used to model the turbulence along the 
stagnation-point streamline and the boundary layer edge. 

k-c Transport Equations 
With a two-dimensional mean flow field, the modeling 

equations for the turbulence kinetic energy k and the turbulence 
dissipation rate E can be written in an x-y orthogonal coordinate 
system as 

u-+v-=- ak a (” 1- ak) +-  a (” 1- ak) --2- -au ak 
ax ay ax c3 ax ay c3 ay ax 

and 

u-+v-=- aE a (vf -- a,) + -  a (”. -- a,) aE 
ax ay ax c4 ax ay c4 ay 

-c1-u  -- 

E -av E 2  - c, - v2 - - c2- 
k ay k 

The turbulent dynamic viscosity vf is related to k and E by 
vf = c,k2/E. The closure assumptions for the Reynolds 
stresses are 

- au av  
- u v  = v, (-& + --) 

av 2 
‘ay 3 

- 
- v 2  = 2v - - - k  

analysis: c1 = 1.44,  c2 = 1.92, c3 = 1.00,  c4 = 1.30, and 
cp = 0.09. 

Applications of k-c Equations 
The k and E equations are used to predict the turbulence 

kinetic energy along the stagnation-point streamline in flow 
region 2 and the boundary layer edge between flow regions 2 
and 3. The mathematical formulations of the k and E equations 
are described in the following section. 

Along Stagnation-Point Streamline 

The turbulence kinetic energy variation along the stagnation- 
point streamline is analyzed. For the stagnation-point flow 
field, the inviscid flow analysis p rdc t s  the mean flow velocity 
components as 

U = a x  and V =  - a y  644) 

with a = 4VdD. Therefore, the velocity gradients 

au - a ,  -- au -0, - s o ,  av -- av - - a  (A5) -- 
ax a Y  ax a Y  

are found from equation (A4). 
Substituting the previous relations into equations (Al) and 

(A2) results in these equations being simplified and becoming 

ay - de = - 4a2clcpk + c2 - - - (~~$2)  (A7) 
dY k dY 

and c,, c2, c3, c4, and cp are empirical constants. The 
following values are usually used in the turbulence flow 

Furthermore, by introducing the coordinate transformations 
(eq. (1)) into the previous equations, the k-E two-equation 
turbulence modeling becomes 

dc 

dr] 
ar] - = - 4a2clc,k + 
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We are seeking the solutions of k and E in the forms 

k = vaK(v) and E = vu2E(v) (AW 

Substituting the previous definitions into equations (AS) and 
(A9)  results in the following dimensionless turbulence 
modeling equations being obtained along the stagnation-point 
streamline: 

Along Boundary Layer Edge 

Equations ( A l )  and (A2)  are also used to analyze the 
turbulence kinetic energy along the boundary layer edge. The 
basic assumptions are that the gradients aklay and aday vanish 
at the boundary layer edge. Thus, the k and E equations become 

The closure assumptions (eqs. (A3)) are also used in deriving 
the previous k and E equations. The mean velocity properties 
in equations (A13) and (A14) are substituted with the results 
in equations (A4)  and (A5). The k and E equations become 

dx dx 

ax- = 4a 2 clcpk - c2- E 2  + - ”( c p -  z z )  - (A16) ak k d x  

Again, the x coordinate is transformed by using equation ( 1 ) .  
The following forms of solutions for k and E are also sought: 

k ( f )  = v a K ( f )  and ~ ( f )  = vu2E( [ )  (A171 

Paralleling the results in flow region 2, the following 
dimensionless forms of the k and E equations are obtained 
through mathematical manipulations : 

2f dE - = 4clcpK - ~2 

df 
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Appendix B 
Turbulence Transport Equations 

For engineering applications, the concepts of eddy viscosity 
and eddy conductivity have been used by researchers to 
calculate the momentum and heat transfer in turbulent flow. 
However, in cases where the dynamics of turbulence is 
important, the concept of eddy transport may not be sufficient 
to study the turbulence. Thus, Donaldson et al. (refs. 16 and 
17) developed a method, the method of invariant modeling, 
to model the dynamics of the turbulence correlations. It is used 
in this study to analyze the turbulence within the boundary 
layer flow region. 

Turbulence Transport Equations 
The one-point turbulence dynamic equations are used in the 

method of invariant modeling. The details in reference 16 are 
followed to derive the transport equations for the turbulence 
double correlations u2, v2, w2, uv, and F i n  the x-y-z 

- - - -  

coordinate system. These equations are 

- - ~ 

au2 au2 -au -au 2 au u-+ v-= - 2 u v - - 2 2 2 - + - p -  
ax ay a Y  ax ax 

a - a 2 2  au au 
vuu + v 2  - 2u- - 

a Y  aY ax, ax, 
-- 

- - ~ 

av2 av2  -au 2 av a - 
u - + v - = 2 v ~ - + - p - - - v v v  

ax ay ax P aY aY 

2 a - a 2 7  a v  av 
+--vp+v--2u-- 

P a Y  ay2 axi ax, 

a--, a -  2 aw a -  
u - w  + v - w 2 = - p - - -  vww 

ax a~ P az aY 

a 2 2  aw aw 
+ U T  -2u-- a Y  ax, ax, 

a -  a -  ,au 1 
u - u v + v - u v =  - v - + - p  

ax a Y  a Y  P 

a -  l a -  
vuv + - -pu  

aY P a Y  
- _  

2 a - au a v  + U T  uv - 2u- - 
a Y  ax, ax, 

and 

a -  a -  - a ~  -au 
U - v t + V - v t = -  v 2 - + v t -  

ax a Y  a Y  ax 
- 

l a -  1 at  a -  
P a~ P a Y  a Y  

a - av  at + v 2  vt - 2v- - aY ax, ax, 

--- p t + -  p---  vvt 

2 

Turbulence Closure Assumptions I 

Assumptions for the higher-order turbulence correlation 
terms in equations (Bl) to (B5) must be made so that these 
turbulence equations and the mean flow transport equations 
can form a closed system of equations to describe the flow 
field. These closure assumptions are based on the turbulence 
double correlations and a length scale A. In this study, the 
following forms of the closure assumptions (refs. 16 and 17) 
are used: 

p r a y  P I  A I I  3 
L J L  J 

2 aw 1 p(i+d+2)0.5] IZ+P+G - - w 2  
3 - P - = -  

P - I  az P A 
L J L  

(-E) 1 
- P 1 P - = -  a Y  at P 1 p ( ~ + ~ + ~ ) O . ' ]  (- z) - [  A 

l a -  

P a Y  
+ F+ - w') 0.5 .] a 2  --vp= --- 
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r 

- 
- a -  vww= -- A ( 2 + T + w 2 )  - 0.5 .;] aw2 
a Y  

2 A ( 2 + 3 +  - w’) 0.5 .;I a iz  

2 A ( 2 + 7 +  - w’) 0.5 - a - vt 
aY 

- - 
a v  a v  v2 

y - - = y -  
z a i  u’ 
ax, ani A ~ ’  ax, ax, 

y - - = y -  

and 

The length scale distribution within the boundary layer in 
flow region 3 of this study is also assumed to be similar to 
the mixing length profile of a flat-plate turbulent boundary 
layer. Within a small distance from the surface, the length scale 
varies linearly as a function of the normal distance from the 
surface. Away from the surface, the length scale remains 
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Figure 12.-Modeling length scale of turbulence closure assumption. 

constant. This length scale profile is shown schematically in 
figure 12. The pivot point location y, is equal to 10 percent 
of the theoretical laminar stagnation-point boundary layer 
thickness 6. At the boundary layer edge, we found that the 
length scale A, can be related to the free-stream turbulence 
intensity by 

Applications of Turbulence 
Transport Equations 

In the present study, the mean flow is two dimensional, 
steady, and incompressible. It is described by the following 
turbulent boundary layer continuity, momentum, and enthalpy 
equations: 

au av 
ax ay 
- + - = o  
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The turbulence double correlations E and z a r e  modeled 
by using the turbulence dynamic equations. They are obtained 
by substituting the turbulence closure assumptions into 
equations (Bl) to (B5). Thereby, the turbulence dynamic 
equations are found to be 

- - au2 au2 -au -au u-+ v-=  - 2 u v - - 2 u 2 -  
ax ay a Y  ax 

+ (u2 + v2 + w 2 y 5  (7.2 - 2 2 )  
A 

- 
a 2 7  u2 + v 2  - 2v-  
a Y  A2 

- - 
av2 av2 Tau 

, ax ay ax 
u - + v - = - 2 v  - 

- - 0.5 
+ (2 + v2 + w2) (2 + 2 - 2 7 )  

A 

a 2 7  7 + v 2  - 2 v 7  
aY A 

- a2Z w2 + v y  - 2v-  
a Y  A2 

- 
uv 

az az (;~+7+;;i)O.~ 
u - + v - = - v  -+ 

ax ay a Y  A 

and 

3A 

a L U V  uv - v -  + 2v-  
a Y 2  A2 

x Z - 3 -  a 1 A (- u ~ + v ~ + w ~  - -)0.5 51 
a Y  

a2vt 2 v v t  
ay2 

- v - + -  

Together with the length scale assumptions, the previous 
equations form a closed system of turbulence transport 
equations. These equations are used to analyze the turbulence 
and the mean flow properties in the boundary layer flow 
region. They are nondimensionalized according to the 
procedures in reference 23. The resulting dimensionless 
equations were reported in a previous study (ref. 18). 
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Appendix C 
Numerical Computation 

The finite difference method is used to calculate the 
turbulence and the mean flow properties within the flow field. 
Summaries of the finite difference scheme and the numerical 
computational procedures are presented in this appendix. 

Finite Difference Scheme 
All of the transport equations (eqs. (All) ,  (A12), (A18), 

(A19), and (14) to (20)) can be represented by the following 
equation: 

where G is either a turbulence or a mean flow property. A 
comparison between equation (C 1) and each transport equation 
shows that AGi ( i  = 1 to 9) may be constant, or the functions 
of the properties and their gradients, or the coordinates t and 
7. The transport equations are written in the forms of equation 
(Cl) to describe the finite difference scheme. 

k-e Turbulence Modeling Equations 

and (A12) can be written as 
In flow region 2, either of the dimensionless equations (A1 1) 

with G = K or E. 

also be written as 
Similarly, equations (A18) and (A19) in flow region 3 can 

with G = K or E. 
Equation (C3) has a form similar to equation (C2) regardless 

of the difference between the and 7 coordinates. A similar 
finite difference scheme is used to convert equations (C2) and 
(C3) into finite difference forms. As an illustration, the steps 
in transforming equation (C2) are described in the following 
paragraphs. 

The following central finite difference scheme with variable 
grid size in the 7 direction is used. The derivatives at each 
grid point m are approximated by 

and 

where 

Substituting the previous expressions into equation (C2) 
yields a finite difference equation, 

at each grid point m. The coefficients Bi (i = 1 to 4) are 
functions of the various coefficients AG; and the grid size at 
the grid points m + 1,, m, and m - 1. 

Applying the previous mathematical manipulation at every 
grid point within the interval ql  2 7 2 v2 results in a set of 
finite difference equations for equation (C2). The boundary 
conditions of G are specified at ql  and v2. This set of 
equations is solved for the G values at each grid point m. 
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Boundary Layer Flow Transport Equations 

written in the following form: 
All of the governing equations (eqs. (14) to (20)) can be 

where G can be one of the mean flow properties or the 
turbulence double correlations. 

For the initial profile calculation, the assumptions and the 
results in the initial profile analysis are used to define aG/at. 
For the downstream calculations, the gradient aG/at is 
approximated by 

where GL is the G,,, at the previous station. Constant grid size 
is used in the 7 direction. The derivatives in the q direction 
are approximated with the following central finite difference 
scheme: 

and 

(C11 

Substituting the previous relations into equation (C7) 
produces a set of finite difference equations, slmi lar  to the form 
of equation (C6), for each of the governing equations (eqs. 
(14) to (20)). 

Computational Procedure 

and 

with 

The sets of finite difference equations are solved by using 
iterative numerical procedures. Depending on the boundary 
conditions, slightly different iterative schemes are employed 
in the numerical computations. 

k--E Turbulence Modeling Equations 

Different procedures are used in flow regions 2 and 3. They 
are described separately in the following sections. 

How region 2.-Equations (10) to (12) describe the 
boundary condition at 7 = q l  and q2. However, q2 is not 
defined. Therefore, v2 is first assigned an arbitrary value to 
start the numerical calculation. The existing analysis (ref. 13) 
indicates that q2 is approximately 5. Linear variations in K 
and E are first assumed. The coefficients of the finite difference 
equations are evaluated with these K and E assumptions. Thus, 
two sets of linear algebraic equations are obtained to relate 
K and E at the grid point locations. Since K and E are 
prescribed at v l  and q2, these equations are solved for K and 
E distributions by using the method of successive substitution. 

The previous procedures are repeated until K and E converge 
at each grid point. The boundary values of K and E at v2 are 
adjusted to ensure that the K and E profiles satisfy the boundary 
conditions (eqs. (1 1) and (12)). 

The convergence in K and E is sensitive to their assumed 
values at the start of the computations. On the basis of k-E 
two-equation turbulence modeling, Stable (ref. 15) developed 
analytical links between the turbulence properties k and E at 
the stagnation point and in the free stream. By neglecting the 
diffusion terms and using the same value for the empirical 
constants c ,  and c2 (i.e., c1 = c2 = 1.90), these analytical 
links can be written as 

2.4VF 1'111 
k2 = (K) k;'" 

According to equation (7), the previous relations are 
nondimensionalized and they become 
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and 

With the isotropic assumptions (eq. (2)) in flow region 1, 
the approximate boundary conditions for K and E at T J ~  are 
calculated from the previous relations. These K and E values 
are used to start the numerical computations. 

The grid size within the computational interval is generated 
by using the model in reference 23. Three hundred to four 
hundred grid points are used in the computations. The grid 
is tightened near q1 and q2 to ensure the boundary conditions. 
now region 3. -The aforementioned numerical calculation 

provides the conditions of K and E at t2. From these 
conditions, the K and E along the boundary layer edge are 
also calculated by using the sets of finite difference equations 
corresponding to equations (34) and (35). The computational 
domain t2  I I l3 is limited to a small region near the 
stagnation point. In this study, t3,  corresponding to cp = 15", 
was chosen. 

The numerical procedure is similar to that used in flow 
region 2. First, K and E at the ts location are estimated and 
linear distributions in K and E between t2 and t3  are 
assumed. The coefficients of the finite difference equations 
are calculated by using the assumed K and E distributions. Two 
sets of linear algebraic equations, relating the K and E at the 
grid points, are obtained. These algebraic equations are solved 

with the method of successive substitution to update the K and 
E distributions. This iterative computational procedure is 
repeated until K and E converge at each grid point. The 
numerical values of K and E at t3 are also adjusted in each 
iteration to facilitate the convergence in the numerical 
computations. 

The grid size within the computational interval is also 
generated with the technique used in flow region 2. Two 
hundred to three hundred grid points are used in the present 
computations. The grid is also tightened near t2 and t3 .  

Boundary Layer Flow Equations 

The numerical computational procedure was developed 
previously in reference 18. It contains two main routines at 
each downstream location. First, the velocity field is 
calculated. This velocity field is then substituted into the energy 
equation to compute the temperature distributions. 

Similar routines are repeated at the next downstream 
locations. At each [ station, the property G at the previous 
4 station is used to define the coefficients AGi in the first 
iteration, and the updated value for G at the current station 
is then used to determine these coefficients in the next iteration. 
However, in the initial profile calculations, the coefficients 
AGi are calculated by using the laminar stagnation-point 
boundary layer flow profiles. 

For the cases calculated in this study, the computational 
domain is limited to 0.04" 5 cp I 15" and q I 6.0. Constant 
grid size (Aq = 0.05) in the TJ direction and variable step size 
along the 4 direction ( A t  corresponding to Acp = 0.01" for 
cp I 0.2" and Acp = 0.2" for cp 2 0.2") are used. 
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